Part Number Hot Search : 
PM5075J ICX41 AD8614 MC1301 BY297 L1210 MBRF10 PSC3506
Product Description
Full Text Search
 

To Download SC2608 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  power management 1 www.semtech.com SC2608 simple, synchronous voltage mode pwm controller features revision 4: october, 2005 the SC2608 is a versatile voltage-mode pwm controller designed for use in step down dc/dc power supply appli- cations. a simple, fixed frequency, highly efficient buck regulator can be implemented using the SC2608 with mini- mal external components. the input voltage range is from +3.3v to +12v. internal level shift and drive circuitry elimi- nates the need for an expensive p-channel, high-side mosfet. the small device footprint allows for compact circuit design. SC2608 features include temperature compensated volt- age reference, triangle wave oscillator, current limit com- parator, and an externally compensated error amplifier. current limit is implemented by sensing the voltage drop across the bottom mosfet r ds(on) . the SC2608 operates at a fixed frequency of 200khz providing an optimum compromise between efficiency , external component size, and cost. SC2608 has a thermal protection circuit, which is activated if the junction temperature exceeds 150 o c. ? +3.3v or +5v or +12v input voltage ? 200khz operation ? high efficiency (>90%) ? 1% reference voltage accuracy ? hiccup mode over current protection ? robust output drive ? r ds(on) current sensing for protection ? industrial temperature range ? so-8 package ? integrated boot strap diode ? termination supplies ? low cost microprocessor supplies ? peripheral card supplies ? industrial power supplies ? high density dc/dc conversion figure 1 description applications typical application circuit sense vout +12v SC2608 comp/ss dl gnd dh bst phase vcc sense +12v/+5v/+3.3v sense ? thermal shut down ? fully weee and rohs compliant
2 ? 2005 semtech corp. www.semtech.com power management SC2608 r e t e m a r a pr e t e m a r a p r e t e m a r a p r e t e m a r a pr e t e m a r a p l o b m y sl o b m y s l o b m y s l o b m y sl o b m y sm u m i x a mm u m i x a m m u m i x a m m u m i x a mm u m i x a ms t i n us t i n u s t i n u s t i n us t i n u v c c d n g o t 0 2 +v e s a h p o t t s b 5 1 +v d n g o t t s b 5 3 +v d n g o t e s a h p ) 1 e t o n ( 4 2 + o t 1 -v e s a h p o t h d 5 1 +v d n g o t l d ) 1 e t o n ( 5 1 + o t 1 -v d n g o t s s / p m o c 7 +v d n g o t e s n e s 7 +v e s a c o t n o i t c n u j e c n a t s i s e r l a m r e h t c j 0 4 o w / c t n e i b m a o t n o i t c n u j e c n a t s i s e r l a m r e h t a j 3 6 1 o w / c e g n a r e r u t a r e p m e t g n i t a r e p o t j 5 2 1 + o t 0 4 - o c e g n a r e r u t a r e p m e t e g a r o t st g t s 0 5 1 + o t 5 6 - o c ) l e d o m y d o b n a m u h ( g n i t a r d s e d s e2v k r e t e m a r a pr e t e m a r a p r e t e m a r a p r e t e m a r a pr e t e m a r a pl o b m y sl o b m y s l o b m y s l o b m y sl o b m y ss n o i t i d n o cs n o i t i d n o c s n o i t i d n o c s n o i t i d n o cs n o i t i d n o cn i mn i m n i m n i mn i mp y tp y t p y t p y tp y tx a mx a m x a m x a mx a ms t i n us t i n u s t i n u s t i n us t i n u y l p p u s r e w o py l p p u s r e w o p y l p p u s r e w o p y l p p u s r e w o py l p p u s r e w o p e g a t l o v y l p p u sv c c 5 . 44 1v t n e r r u c y l p p u si c c v p m o c v 4 . 0 <6a m r e i f i l p m a r o r r er e i f i l p m a r o r r e r e i f i l p m a r o r r e r e i f i l p m a r o r r er e i f i l p m a r o r r e e c n a t c u d n o c s n a r t a / eg m 7s m n i a g c d p o o l n e p oa o 0 6b d t n e r r u c s a i b t u p n ii b f 13 a u t n e r r u c k n i s t u p t u oi k n i s v e s n e s v ; v 9 . 0 > p m o c v 1 . 2 =0 0 7 -a u t n e r r u c e c r u o s t u p t u oi e c r u o s v e s n e s v ; v 7 . 0 < p m o c v 1 . 2 =0 2 1a u r o t a l l i c s or o t a l l i c s o r o t a l l i c s o r o t a l l i c s or o t a l l i c s o y c n e u q e r f g n i h c t i w sf c s o v 2 1 = c c v0 8 10 0 20 2 2z h k exceeding the specifications below may result in permanent damage to the device, or device malfunction. operation outside of th e parameters specified in the electrical characteristics section is not implied. note 1: under pulsing condition, the peak negative voltage can not be lower than -3.6v. absolute maximum ratings electrical characteristics unless specified: v cc = 12v, v bst - v phase = 12 v, v out = 3.3v, t j = t a = 25 o c.
3 ? 2005 semtech corp. www.semtech.com power management SC2608 r e t e m a r a pr e t e m a r a p r e t e m a r a p r e t e m a r a pr e t e m a r a pl o b m y sl o b m y s l o b m y s l o b m y sl o b m y ss n o i t i d n o cs n o i t i d n o c s n o i t i d n o c s n o i t i d n o cs n o i t i d n o cn i mn i m n i m n i mn i mp y tp y t p y t p y tp y tx a mx a m x a m x a mx a ms t i n us t i n u s t i n u s t i n us t i n u e g a t l o v k a e p p m a rv k - p v < v 5 7 . 4 c c v 6 . 2 1 <8 . 1v e g a t l o v y e l l a v p m a rv v v < v 5 7 . 4 c c v 6 . 2 1 <8 . 0v e l c y c y t u d m u m i x a md x a m z h k 0 0 20 9% s r e v i r d t e f s o ms r e v i r d t e f s o m s r e v i r d t e f s o m s r e v i r d t e f s o ms r e v i r d t e f s o m t n e r r u c e c r u o s / k n i s h di h d t w p s n 0 0 4 > v s g ) c r s ( v 5 . 4 = v s g ) k n s ( v 5 . 2 = 6 . 08 . 0a t n e r r u c e c r u o s / k n i s l di l d 6 . 07 . 0 a e m i t l l a f / e s i r h df t , r tc l 2 . g i f e e s , f p 0 0 0 3 =0 5s n e m i t l l a f / e s i r l df t , r tc l 2 . g i f e e s , f p 0 0 0 4 =0 5s n e m i t d a e dt t d 2 . g i f e e s0 8s n e m i t n o m u m i n i m l dt n o v 6 . 2 1 < c c v < v 5 7 . 40 0 4s n n o i t c e s e c n e r e f e rn o i t c e s e c n e r e f e r n o i t c e s e c n e r e f e r n o i t c e s e c n e r e f e rn o i t c e s e c n e r e f e r e g a t l o v e c n e r e f e rv f e r v c c v 2 1 =2 9 7 . 08 . 08 0 8 . 0v e c n a i r a v p m e t ? v f e r t < 0 4 - j 5 2 1 + < o c5 . 1 -5 . 1% e c n a i r a v e n i l ? v f e r v < v 5 7 . 4 c c v 6 . 2 1 <4v m t i m i l t n e r r u ct i m i l t n e r r u c t i m i l t n e r r u c t i m i l t n e r r u ct i m i l t n e r r u c e g a t l o v p i r tv p i r t v 5 7 . 45 . 1 -a u t u o k c o l e g a t l o v r e d n ut u o k c o l e g a t l o v r e d n u t u o k c o l e g a t l o v r e d n u t u o k c o l e g a t l o v r e d n ut u o k c o l e g a t l o v r e d n u d l o h s e r h t o l v uv h t t < 0 4 - j 5 8 < o c1 . 43 . 45 . 4v s i s i r e t s y h o l v uv s y h t < 0 4 - j 5 8 < o c0 0 2v m n w o d t u h s l a m r e h tn w o d t u h s l a m r e h t n w o d t u h s l a m r e h t n w o d t u h s l a m r e h tn w o d t u h s l a m r e h t t n i o p p i r t e r u t a r e p m e t r e v ot p t o 0 5 1 o c electrical characteristics unless specified: v cc = 12v, v bst - v phase = 12 v, v out = 3.3v, t j = t a = 25 o c.
4 ? 2005 semtech corp. www.semtech.com power management SC2608 figure 2 figure 3 block diagram gate drive timing diagram s rq bst e/ a phase 0 0 vcc - osc dl vcc level shift gnd ocp & uvlo + - non-overlap ti mi n g vcc comp/ss + 0 dh ref 0.8v pwm - + 0 ocp phase sense
5 ? 2005 semtech corp. www.semtech.com power management SC2608 top view (8-pin so-8 ) n i pn i p n i p n i pn i p # # # # # e m a n n i pe m a n n i p e m a n n i p e m a n n i pe m a n n i pn o i t c n u f n i pn o i t c n u f n i p n o i t c n u f n i p n o i t c n u f n i pn o i t c n u f n i p 1t s b. r e v i r d e d i s h g i h r o f p a r t s t o o b 2h d. t u p t u o r e v i r d e d i s h g i h 3d n g. d n u o r g 4l d. t u p t u o r e v i r d e d i s w o l 5c c v. n i p y l p p u s s a i b p i h c 6e s n e s. t u p n i e s n e s e g a t l o v t u p t u o 7 s s / p m o c r o t i c a p a c n o i t a s n e p m o c e h t . d n g o t k r o w t e n n o i t a s n e p m o c t c e n n o c . t u p t u o r e i f i l p m a r o r r e . t u p t u o e h t e l b a s i d l l i w w o l n i p s i h t g n i l l u p y b . r o t i c a p a c t r a t s t f o s s a s e v r e s 8e s a h p . s t e f s o m e h t n e e w t e b e d o n g n i h c t i w s e h t o t n i p s i h t t c e n n o c e c i v e d ) 1 ( e g a k c a pt ( e g n a r p m e t j ) t r t s 8 0 6 2 c s ) 2 ( 8 - o s5 2 1 o t 0 4 - o c b v e 8 0 6 2 c sd r a o b n o i t a u l a v e notes: (1) only available in tape and reel packaging. a reel con- tains 2500 devices. (2) this device is fully weee and rohs compliant 1 bst 2 3 4 dh 5 dl 6 7 vcc sense 8 comp/ss phase gnd pin configuration ordering information pin descriptions
6 ? 2005 semtech corp. www.semtech.com power management SC2608 synchr synchr synchr synchr synchr onous buck con onous buck con onous buck con onous buck con onous buck con v v v v v er er er er er t t t t t er er er er er the output voltage of the synchronous converter is set and controlled by the output of the error amplifier. the invert- ing input of the error amplifier receives its voltage from the sense pin. the non-inverting input of the error amplifier is connected to an internal 0.8v reference. the error ampli- fier output is connected to the compensation pin. the error amplifier generates a current proportional to (vsense - 0.8v), which is the comp pin output current (transconductance ~ 7ms). the voltage on the comp pin is the integral of the error amplifier current. the comp voltage is the non-inverting input of the pwm comparator and controls the duty cycle of the mosfet drivers. the compensation network controls the stability and transient response of the regulator. the larger the capacitor, the slower the comp voltage changes, and the slower the duty cycle changes. the non-inverting input voltage of the pwm comparator is the triangular ramp signal generated from the oscillator. the peak-to-peak voltage of the ramp is 1v, this is a pa- rameter used in control loop calculation. when the oscil- lator ramp signal rises above the comp voltage, the com- parator output goes high and the pwm latch is reset. this pulls dh low, turning off the high-side mosfet. after a short delay (dead time), dl is pulled high, turning on the low-side mosfet. the oscillator also produces a set pulse for the pwm latch to turn off the low-side mosfet, after a delay time, dh is pulled high to turn on the high-side mosfet. the delay time is determined by a monostable on the chip. the triangle wave minimum is about 0.8v, and the maxi- mum is about 1.8v. thus, if vcomp = 0.7v, high side duty cycle is the minimum (~0%) , but if vcomp is 1.8v, duty cycle is at maximum ( ~90%).the internal oscillator uses an on- chip capacitor and trimmed precision current sources to set the oscillation frequency to 200khz. figure 1 shows a 2.5v output converter. if the vout <2.5v, then the sense voltage < 0.8v. in this case the error amplifier will be sourcing cur- rent into the comp pin so that comp voltage and duty cycle will gradually increase.if vout > 2.5v, the error amplifier will sink current and reduce the comp voltage, so that duty cycle will decrease.the circuit will be in steady state when vout =2.5v , vsense = 0.8v, icomp = 0. the comp voltage and duty cycle depend on vin. u u u u u nder v nder v nder v nder v nder v oltage lock oltage lock oltage lock oltage lock oltage lock out out out out out the under voltage lockout circuit of the SC2608 assures that both high-side and low-side mosfet driver outputs remain in the off state whenever the supply voltage drops below the set threshold. lockout occurs if v cc falls below 4.3v typ. sof sof sof sof sof t star t star t star t star t star t t t t t the SC2608 provides a soft start function to prevent large inrush currents upon power-up or hiccup retry. if both comp and sense pins are low (<300mv), the device enters soft start mode, and the compensation capacitor is slowly charged by an internal 1.5ua current source. when the comp pin reaches 300mv, the low side fet is switched on in order to refresh the bootstrap capacitor, and begin pwm from a known state. as the comp pin rises above 800mv, pwm begins at minimum duty cycle. comp continues to charge, slowly sweeping the device through the duty cycle range until fb reaches the regulation point of 800mv. once fb reaches the regulation point, the soft start current is switched off, and the strong error amp is enabled, providing a glitch-free entrance into closed loop operation. the overcurrent comparator is still active during soft start mode, and will override soft start in the event that an overcurrent is detected, such as startup into a dead short. r r r r r ds(on) ds(on) ds(on) ds(on) ds(on) current limiting current limiting current limiting current limiting current limiting in case of a short circuit or overload, the low-side (ls) fet will conduct large currents. to protect the regulator in this situation, the controller will shut down the regulator and be- gin a soft start cycle later. while the ls driver is on,the phase voltage is compared to the ocp trip voltage. if the phase voltage is lower than ocp trip voltage, an over current condi- tion is detected. the low-side r dson sense is implemented at end of each ls-fet turn-on duration. the minimum turn-on time of the ls-fet is set to be 400ns. this will ensure the sampled signal is noise free by giving enough time for the switching noise to die down. theory of operation ocp hiccup ocp hiccup ocp hiccup ocp hiccup ocp hiccup in the event that an overcurrent is detected, the SC2608 latches the fault and begins a hiccup cycle. switching is immediately stopped, and the drivers are set to a tristate condition (both dh and dl are low). comp is slowly discharged to 300mv with an internal 1.5ua current source, providing a long cooldown time to keep power dissipation low in the event of a continuous dead short. once comp and sense both fall below the 300mv threshold, the part re-enables the 1.5ua soft start current , and the device begins a normal startup cycle again.
7 ? 2005 semtech corp. www.semtech.com power management SC2608 applications information (cont.) the control model of SC2608 is depicted in fig. 4. this model can also be used to generate loop gain bode plots. the bandgap reference is 0.8v and trimmed to +/-1% accuracy. the desired output voltage can be achieved by setting the resistive divider network, r1 and r2. the error amplifier is transconductance type with fixed gain of: the compensation network includes a resistor and a ca- pacitor in series, which terminates the output of the error amplifier to the ground. the task here is to properly choose the compensation net- work for a nicely shaped loop-gain bode plot. the follow- ing design procedures are recommended to accomplish the goal: (1) calculate the corner frequency of the output filter: (2) calculate the esr zero frequency of the output filter capacitor: (3) check that the esr zero frequency is not too high. if this condition is not met, the compensation structure may not provide loop stability. the solution is to add some electrolytic capacitors to the output capacitor bank to cor- rect the output filter corner frequency and the esr zero frequency. in some cases, the filter inductance may also need to be adjusted to shift the filter corner frequency. it is not recommended to use only high frequency multi-layer ceramic capacitors for output filter. (4) choose the loop gain cross over frequency (0 db fre- quency). it is recommended that the crossover frequency is always less than one fifth of the switching frequency : if the transient specification is not stringent, it is better to choose a crossover frequency that is less than one tenth of the switching frequency for good noise immunity. the resistor in the compensation network can then be calcu- lated as: when fig. 4. SC2608 small signal model. vin c g_pwm rc r e/a vbg 0.8v ro l r1 ci r2 co () () ? ? ? ? ? ? ? ? + + ? ? ? ? ? ? ? ? + + + ? ? ? ? ? ? ? ? ? ? ? ? ? = o c o o o c o c c o bg in pwm m r r lc s r l c r s c sr s h v v v g g s t 1 1 1 2 () i c sc sc r s h + + = 1 1 1 o o lc f 2 1 = o c esr c r f 2 1 = 5 sw esr f f < sw over x f f ? = 5 1 _ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? = bg o esr over x o esr m in pwm v v f f f f g v g r _ 2 1 f o f esr < f sw 5 < v a g m 007 . 0 = the total control loop-gain can then be derived as follows: where the ramp amplitude is fixed at 1 volts. ramp pwm v g 1 = compensation network design compensation network design compensation network design compensation network design compensation network design a note to the user is needed: the device cannot restart until both comp and sense are low, to prevent start up into a charged output. in the event of an overcurrent condition, the output is quickly discharged by the load, therefore bringing sense below the 300mv threshold. if the comp pin is pulled low by an external device (such as an open-drain logic gate used for system shutdown), and sense is high(above 300mv) is high while comp is low, then the SC2608 turns on the low side fet to discharge the output before changing to shutdown or soft-start mode. the low side fet turns off when sense drops below 300mv and the converter remains in the tri- state condition until comp is released. although this shutdown technique can be used successfully on the SC2608, the system designer using comp for external shutdown will need to consider the load on the low side fet when discharging the output capacitor bank. for large capacitor bank, this peak current can be quite large as it is limited only by the r ds(on) of the low side fet. fortunately the duration of this event is quite short, and has been shown in the lab to have no detrimental effect on the performance of the external fets. disabling the output by pulling down comp/ss pin is only recommended when the output capacitor bank is not too large. the pwm gain is inversion of the ramp amplitude, and this gain is given by:
8 ? 2005 semtech corp. www.semtech.com power management SC2608 (6) the final step is to generate the bode plot by using the simulation model in fig. 4 or using the equations provided here with mathcad. the phase margin can then be checked using the bode plot. applications information (cont.) (5) the compensation capacitor is determined by choosing the compensator zero to be about one fifth of the output filter corner frequency: SC2608 soft start time is determined by the compensation capacitor. capacitance can be adjusted to satisfy the soft start requirement. an example is given below to demonstrate the procedure introduced above. set to for suitable soft start time fig. 5. bode plot of the loop 10 100 1 . 10 3 1 . 10 4 1 . 10 5 1 . 10 6 50 0 50 100 loop gain mag (db) mag i () f i 10 100 1 . 10 3 1 . 10 4 1 . 10 5 1 . 10 6 180 135 90 45 0 loop gain phase (degree) phase i () f i set 5 o zero f f = zero f r c ? = 2 1 v in =12v v o =2.5v f sw =200khz i o =15a c i =1nf c o =4400uf r c =0.009 ? v ramp =1v g m =0.007a/v v bg =0.8v c=327.95nf r c =1.33k ? r c =1.5k ? c=100nf set to l=2.2uh
9 ? 2005 semtech corp. www.semtech.com power management SC2608 typical performance characteristics vref vs. temperature 0.79 0.80 0.81 0.82 0.83 -50 -25 0 25 50 75 100 125 temperature( ) vref(v) frequency vs. temperature 170 180 190 200 210 -50-25 0 255075100125 temperature( ) frequency(khz) i_limit vs. temperature 150 160 170 180 190 -50-25 0 255075100125 temperature( ) i_limit trip(mv) uvlo vs. temperature 4.10 4.20 4.30 4.40 4.50 -50 -25 0 25 50 75 100 125 temperarure( ) uvlo(v ) gate driver dead time vs. temperature 60 70 80 90 100 -50 -25 0 25 50 75 100 125 temperature( ) gate driver dead time(ns) icc vs. temperature 2.8 3.1 3.4 3.7 4.0 -50-25 0 255075100125 temperature( ) icc(ma) soft start sourcing vs. temperature 1.25 1.35 1.45 1.55 1.65 -50-250 255075100125 temperature( ) soft start souring current(ua) uvlo_hysteresis vs. temperature 0 50 100 150 200 -50-25 0 25 50 75100125 temperature( ) uvlo_hysteresis(mv )
10 ? 2005 semtech corp. www.semtech.com power management SC2608 application information bill of materials bill of materials bill of materials bill of materials bill of materials m e t iy t i t n a u qe c n e r e f e rt r a pr e d n e v 111 cv 6 1 / f u 7 . 4y n a 22 3 c , 2 cv 6 1 / f u 0 0 5 1j f c i n o s a n a p 314 cv 0 5 / f n 1y n a 42 3 1 c , 5 cv 6 1 / f u 1y n a 516 cv 5 2 / f n 0 0 1y n a 62 8 c , 7 cv 3 . 6 / f u 0 0 2 2j f c i n o s a n a p 73 1 1 c , 0 1 c , 9 cv 3 . 6 / f u 7 . 4y n a 812 1 cf n 2 . 2y n a 911 lh u 2 . 1y n a 0 111 qa l 3 0 n 9 0 d p in o e n i f n i 1 112 qa l 3 0 n 6 0 d p in o e n i f n i 2 111 r2 r 2y n a 3 112 rk 5 . 1y n a 4 12 6 r , 3 r% 1 , k 1y n a 5 12 5 r , 4 r0 r 1y n a 6 111 u8 0 6 2 c sh c e t m e s u1 SC2608 1 2 3 4 5 6 7 8 bst dh gnd dl vcc sense comp/ss phase c3 1500uf /16v c5 1uf/16v c11 4.7uf /6.3v r4 1r c9 4.7uf/6.3v l1 1.2uh c7 2200uf/6.3v c1 4.7uf /16v q2 ipd 06n 03la c6 100n c4 1n r2 1.5k c10 4.7uf /6.3v r3 1k +12v/+5v/+3.3v r6 1k c13 1uf/16v sense c8 2200uf/6.3v 1.6vout/20a sense c12 2.2nf r5 1r q1 ipb09n 03la +12v c2 1500uf /16v r1 2r2 vout = 0.8v x (r3+r6)/r6 t t t t t ypical application schematic ypical application schematic ypical application schematic ypical application schematic ypical application schematic
11 ? 2005 semtech corp. www.semtech.com power management SC2608 typical performance characteristics efficiency v.s. load current 78 80 82 84 86 88 90 92 1 2 3 4 5 6 7 8 9 10 111213 141516 171819 20 load current (a) efficiency (%) transient response comp/ss vout il (10a/10mv) comp/ss vout il (10a/10mv) 0 -18 a step load dh phase node dl dh phase node dl 15 a sustain loading gate waveforms over current protection (33a dc tripped) ocp hiccup start up vin comp/ ss vout dl vin comp/ ss vout dl vin comp/ ss vout dl vin comp/ss vout dh vin comp/ss vout dh
12 ? 2005 semtech corp. www.semtech.com power management SC2608 application information t t t t t ypical ddr vddq application schematic ypical ddr vddq application schematic ypical ddr vddq application schematic ypical ddr vddq application schematic ypical ddr vddq application schematic bill of materials bill of materials bill of materials bill of materials bill of materials m e t iy t i t n a u qe c n e r e f e rt r a pr e d n e v 14 3 1 c , 2 1 c , 1 1 c , 1 cv 3 . 6 / f u 7 . 4y n a 23 4 c , 3 c , 2 cv 3 . 6 / f u 0 0 5 1j f c i n o s a n a p 315 cv 0 5 / f p 0 3 3y n a 42 5 1 c , 6 cv 6 1 / f u 1y n a 517 cv 5 2 / f n 0 2 2y n a 63 0 1 c , 9 c , 8 cv 3 . 6 / f u 0 0 8 1j f c i n o s a n a p 71 4 1 cv 0 5 / f n 1y n a 811 dh 4 5 t a by n a 912 d8 4 1 4 n 1y n a 0 111 la 0 4 / h u 2 . 1y n a 1 111 qa l 3 0 n 6 0 d p in o e n i f n i 2 112 qa l 3 0 n 6 0 d p in o e n i f n i 3 12 4 r , 1 r2 r 2y n a 4 112 rk 1 . 5y n a 5 113 r% 1 , k 7 2 . 1y n a 6 115 r% 1 , k 1y n a 7 111 u8 0 6 2 c sh c e t m e s c4 1500uf/6.3v c5 330pf +12v c1 4.7uf/16v 5vdual r3 1.27k r2 5.1k c9 1800uf/6.3v r1 2.2r sense c2 1500uf/6.3v c10 1800uf/6.3v c13 4.7uf/6.3v q2 ipd 06n 03la c8 1800uf/6.3v c14 1n c3 1500uf/6.3v q1 ipd 06n 03la c7 220nf c15 1uf/16v u1 SC2608 1 2 3 4 5 6 7 8 bst dh gnd dl vcc sense comp/ss phase sense r5 1k 5vdual 1.8vout/24a c11 4.7uf/6.3v r4 2r2 l1 1.2uh/40a d1 bat54h d2 d1n4148 c6 1uf/16v c12 4.7uf/6.3v
13 ? 2005 semtech corp. www.semtech.com power management SC2608 application information t t t t t ypical high in ypical high in ypical high in ypical high in ypical high in put v put v put v put v put v oltage application schematic oltage application schematic oltage application schematic oltage application schematic oltage application schematic bill of materials bill of materials bill of materials bill of materials bill of materials m e t iy t i t n a u qe c n e r e f e rt r a pr e d n e v 111 cv 5 2 / f u 7 . 4y n a 212 cv 5 2 / f u 0 0 0 1j f c i n o s a n a p 313 c. t p o , v 0 5 / f p 0 1y n a 42 1 1 c , 4 cv 6 1 / f u 1y n a 515 cv 6 1 / f n 0 0 1y n a 616 cv 3 . 6 / f u 0 0 2 2j f c i n o s a n a p 72 8 c , 7 cv 3 . 6 / f u 7 . 4y n a 819 cv 0 5 / f n 1y n a 91 0 1 cv 0 5 / f n 2 . 2y n a 0 111 dv 2 . 8 r e n e zy n a 1 111 la 5 1 / h u 2 . 2y n a 2 111 qa l 3 0 n 3 1 d p in o e n i f n i 3 112 qa l 3 0 n 3 1 d p in o e n i f n i 4 111 rr 0y n a 5 112 rr 1 . 5y n a 6 12 7 r , 3 r% 1 , k . 1y n a 7 114 r2 r 2y n a 8 115 r% 1 , k 5 2 . 5y n a 9 12 7 r , 6 r6 0 2 1 , r k 1y n a 0 211 u8 0 6 2 c sh c e t m e s u1 SC2608 1 2 3 4 5 6 7 8 bst dh gnd dl vcc sense comp/ss phase sense c10 2.2nf sense c6 2200uf/6.3v d1 8.2v c2 1000uf/25v c8 4.7uf/6.3v vin r2 5r1 c4 1uf/16v r7 1k c3 10pf/opt. l1 2.2uh r7 1kr/1206 r4 2r2 r5 5.25k r1 0r r3 1k c9 1n 5vout/8a 20vin c5 100n q1 ipd13n03la c7 4.7uf/6.3v q2 ipd13n03la c1 4.7uf/25v r6 1kr/1206 c11 1uf/16v
14 ? 2005 semtech corp. www.semtech.com power management SC2608 see detail detail a a .050 bs c .236 bs c 8 .010 .150 .189 .154 .193 .012 - 8 0.25 1.27 bsc 6.00 bsc 3.90 4.90 - .157 .197 3.80 4.80 .020 0.31 4.00 5.00 0.51 bxn 2x n/2 tips seating aaa c e/2 2x 12 n a d a1 e1 bbb c a-b d ccc c e/2 a2 (.041) .004 .008 - .028 - - - - 0 .016 .007 .049 .004 .053 8 0 0.20 0.10 - 8 0.40 0.17 1.25 0.10 .041 .010 .069 .065 .010 1.35 (1.04) 0.72 - 1.04 0.25 - - - 1.75 1.65 0.25 0.25 - .010 .020 0.50 - c l (l1) 01 0.25 gage plane h h 3. dimensions "e1" and "d" do not include mold flash, protrusions or gate burrs. -b- controlling dimensions are in millimeters (angles in degrees). d atu m s a n d to b e d eter m in ed at datum plan e notes: 1. 2. -a- -h- side view a b c d e h plane l1 n 01 bbb aaa ccc a b a2 a1 d e e1 l h e c dim min millimeters nom dimensions inches min max max nom e outline drawing - so-8
15 ? 2005 semtech corp. www.semtech.com power management SC2608 land pattern - so-8 (.205) (5.20) z g y p (c) 3.00 .118 1.27 .050 0.60 .024 2.20 .087 7.40 .291 x inches dimensions z p y x dim c g millimeters this land pattern is for reference purposes only. consult your manufacturing group to ensure your company's manufacturing guidelines are met. notes: 1. reference ipc-sm-782a, rlp no. 300a. 2. contact information semtech corporation power management products division 200 flynn road, camarillo, ca 93012 phone: (805)498-2111 fax (805)498-3804


▲Up To Search▲   

 
Price & Availability of SC2608

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X